
SW2D - Manual 2.1.0
Quick-start, User and Developer Guides

Team LEMON
May 2022

2021. The Shallow Water 2D (SW2D) documentation has been developed by the LEMON
project-team, common to Inria and University of Montpellier (France). This document may be
used, copied, distributed, or redistributed freely. However, it is requested that SW2D be given
appropriate acknowledgments/citation in any subsequent use of this work.

i

Contents

Contents ii

I Quick Start Guide 1

1 Overview 3
1.1 About This Guide . 3
1.2 Product Overview . 3
1.3 About the SW2D Developer Team . 3
1.4 Licensing . 3

2 Before You Install 5
2.1 Understand System Requirements . 5
2.2 The SW2D Structure In A Nutshell . 5

3 Install SW2D from binaries 7
3.1 Linux and MacOS . 7
3.2 Windows . 7

4 First Examples 9
4.1 sw2dConverter examples . 9
4.2 sw2dSolver examples . 9

II User Guide 15

5 Physical and Numerical Models 17

6 Boundary conditions 19
6.1 time interpolation . 19
6.2 f-type boundary condition . 19
6.3 c-type boundary condition . 20

7 Running the code 21
7.1 sw2dConverter . 21
7.2 sw2dModeler . 21
7.3 sw2dSolver . 23

8 Simulation structure 25

9 Input File Format 27
9.1 Boussinesq_map.txt . 27
9.2 Buildings_exchange_map.txt . 28
9.3 DDP_cell_porosity_map.txt . 29
9.4 DDP_edge_porosity_map.txt . 30
9.5 DIP_cell_porosity_map.txt . 31
9.6 DIP_edge_porosity_map.txt . 31
9.7 SP_cell_porosity_map.txt . 32
9.8 extraction_times_list.txt . 33

ii

Contents

9.9 friction_chezy_map.txt . 33
9.10 friction_manning_map.txt . 34
9.11 friction_strickler_map.txt . 35
9.12 Hydro_boundary_time_series.txt . 36
9.13 Infiltration_map.txt . 37
9.14 initial_conditions_map.txt . 37
9.15 input.sw2d . 38
9.16 precipitation_boundary_time_series.txt Why "boundary"? It is a source term. . 41
9.17 Precipitation_station_codes_map.txt . 41
9.18 probes_location.txt . 42
9.19 singular_head_loss_map.txt . 42
9.20 wind_station_codes_map.txt . 42
9.21 wind_time_series.txt . 44

10 Ouptut Files Format 45
10.1 output/ResultBoundariesFlux.txt . 45
10.2 output/ResultHydro_pDDDDdHHhMMmSSsXXX.txt 45

III Developer Guide 47

11 Before You Install 49
11.1 Understand System Requirements . 49
11.2 The SW2D Structure In A Nutshell . 49

12 Install from sources 51
12.1 Linux . 51
12.2 MacOS . 52
12.3 Windows . 53

Index 57

iii

PART I

Quick Start Guide

CHAPTER 1

Overview

1.1 About This Guide

This Quick Start guide is a brief introduction to SW2D intended to help you run a first simulation
to insure that every requirements are full-filled prior to running your own complex simulation. For
more details on physical and numerical models, together with detailed specifications of input/output
data, the reader is referred to the User Guide (see Part II).

1.2 Product Overview

SW2D (Shallow Water 2D) is a C++ package dedicated to shallow water modeling and includes
additional features such as porosity modeling (upscaling).
The software can be installed thanks to dedicated binary files provided for Linux, MacOS and
Windows operating systems. SW2D contains a numerical solver that can be used in command line
and/or a graphic user interface in which numerical simulations can be configured, run and plotted.

1.3 About the SW2D Developer Team

LEMON is a research team between Inria Sophia-Antipolis Méditerranée, Hydrosciences Montpellier
(HSM) and Institut Montpelliérain Alexander Grothendieck (IMAG). It is an interdisciplinary team
working on the design and implementation of accurate and computationally inexpensive models for
natural processes occurring in the littoral area. We develop theoretical and numerical tools (both
deterministic and stochastic) to model physical processes that occur in the coastal region, both
inland and in the sea. We see the shoreline as the natural interface between various environments:
sea, sandy bottoms, urban coastal areas, river deltas, lagoons, etc. Our objective is to build and
improve models to simulate those systems and to couple them (together or with external data)
in order to produce a global coastal risk management system that better accounts for the return
period, variety and intensity of natural phenomena.

1.4 Licensing

Software SW2D, property of UM-Inria - 2021, all rights reserved, hereinafter "the Software".

This software has been developed by researchers of LEMON project team of Inria (Institut National
de Recherche en Informatique et Automatique) and UM (University of Montpellier).

Inria, Domaine de Voluceau, Rocquencourt - BP 105
78153 Le Chesnay Cedex, FRANCE

Université de Montpellier, 163 rue Auguste Broussonnet
34090 Montpellier, FRANCE

Inria and UM (hereinafter named "the Consortium") hold all the ownership rights on the Software.
The Software has been registered with the Agence pour la Protection des Programmes (APP) under
IDDN.FR.001.430019.001.S.P.2019.000.31235

3

1. Overview

Every user of the Software could communicate to the developers of SW2D
(amdt-sw2d@inria.fr) his or her remarks as to the use of the Software.

THE USER CANNOT USE, EXPLOIT OR COMMERCIALLY DISTRIBUTE THE SOFTWARE
WITHOUT PRIOR AND EXPLICIT CONSENT OF THE CONSORTIUM. ANY SUCH ACTION
WILL CONSTITUTE A FORGERY.
THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT ANY WARRANTIES OF ANY NATURE
AND ANY EXPRESS OR IMPLIED WARRANTIES,WITH REGARDS TO COMMERCIAL
USE, PROFESSIONAL USE, LEGAL OR NOT, OR OTHER, OR COMMERCIALISATION OR
ADAPTATION.
UNLESS EXPLICITLY PROVIDED BY LAW, IN NO EVENT, SHALL THE CONSORTIUM
OR THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, LOSS OF USE, DATA, OR
PROFITS OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING FROM, OUT OF OR IN CONNECTION WITH
THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Public Research License

The Software is still under development. It is one Consortium’s aim to widely disseminate the
Software in the scientific community and collect feedback enabling regular improvements.
For these reasons the Consortium has decided to distribute the Software.
The Consortium grants to the academic user, a free of charge, without right to sublicense non-
exclusive right to use the Software for research purposes for a period of one (1) year from the date
of the download of the compiled code. Any other use without of prior consent of the Consortium is
prohibited.
The academic user explicitly acknowledges having received from the Consortium all information
allowing him to appreciate the adequacy between the Software and his needs and to undertake all
necessary precautions for his execution and use.
The Software is provided only as a compiled library file and decompiling process are strictly
unauthorized.

If results obtained through the use of the Software were to be published, authors should cite the
Software taking information from the following webpage: SW2D publication page.

Educational License

To be completed.

Private License

To be completed.

4

http://sw2d.inria.fr/documentation/publications/

CHAPTER 2

Before You Install

2.1 Understand System Requirements

SW2D is made to be used on all Linux/MacOS/Windows machines. Most 64-bits processors will
be compatible with the install binaries provided by the developper team. For specific configuration,
please contact the technical team.

2.2 The SW2D Structure In A Nutshell

The SW2D software is based on several programs (see Figure 2.1). Geometrical pre-processing is
separated from the main computation process to avoid to reprocess the geometry each time the
hydrodynamics variables are modified by the user. The computation can be realised either in a
GUI or in a solver mode (with no GUI). The current version of SW2D requires a complementary
software to produce mesh and the parameter files. AR:En dire plus.

Figure 2.1: Workflow of a typical SW2D computation fig:layout

5

CHAPTER 3

Install SW2D from binaries

3.1 Linux and MacOS

Installation from binary files is not available for MacOS and Linux under this version of the code.
Users of these operating systems are invited to contact the developer team directly in order to
obtain a direct SW2D download link.

3.2 Windows

¨
Binary files for Windows operating systems, containing both SW2D and starting examples, can be
found on the SW2D webpage.
Follow the following steps to get SW2D installed on your machine:

1. Locate the .exe file on the SW2D webpage and download it.

2. Locate and double-click the downloaded .exe file. (It will usually be in your Downloads
folder.)

3. A dialog box will appear. Follow the instructions to install the software.

[] []fig:install-
windows-1

fig:install-
windows-2

Figure 3.1: Installation process under windows: first steps fig:install-
windows-start

4. The software will be installed. For more convenience, it is recommended to add icons on your
personal desktop.

Remark 3.2.1. Installation requires the program to be stored in a hidden directory on your computer.
If necessary, you can view the hidden files and folders on your computer by following the procedure
on the Microsoft Support site.

7

http://sw2d.inria.fr/getting-started/
http://sw2d.inria.fr/getting-started/
https://support.microsoft.com/fr-fr/windows/afficher-les-fichiers-cach%C3%A9s-0320fe58-0117-fd59-6851-9b7f9840fdb2

3. Install SW2D from binaries

[] []fig:install-
windows-3

fig:install-
windows-4 Figure 3.2: Installation process under windows: last steps fig:install-

windows-end

8

CHAPTER 4

First Examples

Together with the SW2D binary files (solver and GUI), the installer also provides several examples
that can be immediately computed.
This guide presents, for each example, the input files provided and the model illustrated. Results
and model physical information can be found on the dedicated SW2D webpage.

Folder structure

The examples folder includes:

• folder converter: contains the examples for sw2dConverter

• folder solver: contains the examples for sw2dSolver

• check_all.sh: script checking that all the examples are run successfully.

• README.txt

4.1 sw2dConverter examples

Figure 4.1: Initial structure of the converter folder fig:
tree_converter_

examples

All the sw2dConverter examples aim to produce the geometry.sw2d. The sw2dConverter run only
in command line.
Test Input file(s) Command
01_2dm square.2dm sw2dConverter input/square.2dm –force -d -1
02_2dm_NS square.2dm sw2dConverter input/square.2dm –force -d -2

03_2dm_bc square.2dm sw2dConverter input/square.2dm –force -d -2 -b input/square.bcsquare.bc

4.2 sw2dSolver examples

The solver folder contains the following structure:
AR:Ecrire ici comment on lance le code et ensuite comment ça impacte sur la structure.

9

http://sw2d.inria.fr/examples

4. First Examples

Figure 4.2: Initial structure of the solver folder fig:tree_solver_

examples

01-Dambreak-ShallowWater

This example reproduces a dambreak simulation in a rectangular channel using the classical shallow
water model without friction.

input folder contents

file name description
1D_Mesh.bc description of the boundary type. This file is only used

to generate the geometry.geo file.
1D_Mesh_zb0.2dm mesh. This file is only used to generate the geo-

metry.geo file.
geometry.geo geometry file
hydro_boundary_time_series.txt boundary condition time series
initial_conditions_map.txt spatial distribution of the initial condition
input.sw2d input file

Table 4.1: 01-Dambreak-ShallowWater example: description of the input folder contents tab:sw_dambreak_

InputFiles

expected output

file name description
ResultBoundariesFlux.txt time series of the discharge crossing each type of

boundary.
ResultHydro_XXX.csvPFG:get the correct
name

hydrodynamic results at time XXX. XXX is the
time from the beginning of the simulation using the
ISO...PFG:complete format.

Table 4.2: 01-Dambreak-ShallowWater example: description of the output results tab:sw_dambreak_

OutputFiles

10

4.2. sw2dSolver examples

02-Friction-ShallowWater

This example reproduces flow in a rectangular channel with friction using the classical shallow
water model. It converges to a steady uniform flow in mild slope with a downstream boundary
condition.

input folder contents

file name description
friction_strickler_map.txt spatial distribution of the Strickler coefficient (uni-

formly set to K = 30m1/3.s−1.
hydro_boundary_time_series.txt boundary condition time series
initial_conditions_map.txt spatial distribution of the initial condition
input.sw2d input file
mesh.2dm mesh. This file is only used to generate the geo-

metry.geo file.

Table 4.3: 02-Friction-ShallowWater example: description of the input folder contents tab:sw_friction_

InputFiles

expected output

file name description
ResultBoundariesFlux.txt time series of the discharge crossing each type of

boundary.
ResultHydro_XXX.csvPFG:get the correct
name

hydrodynamic results at time XXX. XXX is the
time from the beginning of the simulation using the
ISO...PFG:complete format.

Table 4.4: 02-Friction-ShallowWater example: description of the output results tab:sw_friction_

OutputFiles

11

4. First Examples

04-Sacramento-DIP

This example simulates the flood propagation due to a dike failure at Sacramento using the Dual
Integral Porosity (DIP) model1.

input folder contents

file name description
Boussinesq_map.txt spatial distribution of the Boussinesq coefficient (uni-

formly set to 1).
DIP_cell_porosity_map.txt spatial distribution of the storage porosity in cells (DIP

model) (uniformly set to φomega = 0.5)
DIP_edge_porosity_map.txt spatial distribution of the conveyance porosity along

interfaces (DIP model) (uniformly set to φgamma =
0.25)

friction_strickler_map.txt spatial distribution of the Strickler coefficient (uni-
formly set to K = 60m1/3.s−1.

geometry.geo geometry file
hydro_boundary_time_series.txt boundary condition time series
initial_conditions_map.txt spatial distribution of the initial condition
input.sw2d input file

Table 4.5: 04-Sacramento-DIP example: description of the input folder contents tab:
dip_sacramento_

InputFiles

expected output

file name description
ResultBoundariesFlux.txt time series of the discharge crossing each type of

boundary.
ResultHydro_XXX.csvPFG:get the correct
name

hydrodynamic results at time XXX. XXX is the
time from the beginning of the simulation using the
ISO...PFG:complete format.

Table 4.6: 04-Sacramento-DIP example: description of the output results tab:
dip_sacramento_

OutputFiles

1Guinot V., Sanders B. F. & Schubert J. E. (2017). Dual integral porosity shallow water model for urban flood
modelling. Advances in Water Resources 103, 16–31. https://doi.org/10.1016/j.advwatres.2017.02.009

12

https://doi.org/10.1016/j.advwatres.2017.02.009

4.2. sw2dSolver examples

05-Dambreak-DDP

This example reproduce a dambreak simulation in a triangular channel using the Depth-Dependant
Porosity (DDP) model2.

input folder contents

file name description
Boussinesq_map.txt spatial distribution of the Boussinesq coefficient
DDP_cell_porosity_map.txt spatial distribution of the storage porosity in cells (DDP

model)
DDP_edge_porosity_map.txt spatial distribution of the conveyance porosity along

interfaces (DDP model)
geometry.2dm mesh. This file is only used to generate the geo-

metry.geo file.
geometry.bc description of the boundary type. This file is only used

to generate the geometry.geo file.
geometry.geo geometry file
hydro_boundary_time_series.txt boundary condition time series
initial_conditions_map.txt spatial distribution of the initial condition
input.sw2d input file

Table 4.7: 05-Dambreak-DDP example: description of the input folder contents tab:
ddp_dambreak_

InputFiles

expected output

file name description
ResultBoundariesFlux.txt time series of the discharge crossing each type of

boundary.
ResultHydro_XXX.csvPFG:get the correct
name

hydrodynamic results at time XXX. XXX is the
time from the beginning of the simulation using the
ISO...PFG:complete format.

Table 4.8: 05-Dambreak-DDP example: description of the output results tab:
ddp_dambreak_

OutputFiles

2Guinot V., Delenne C., Rousseau A. & Boutron O. (2018). Flux closures and source term models for
shallow water models with depth-dependent integral porosity. Advances in Water Resources 109, 133–157.
https://doi.org/10.1016/j.advwatres.2018.09.014

13

https://doi.org/10.1016/j.advwatres.2018.09.014

PART II

User Guide

4. First Examples

part:userguide

16

CHAPTER 5

Physical and Numerical Models

The interested reader is referred to the following reference:

Steinstraesser et al., SW2D: a new software for upscaled shallow water modeling, SimHydro
2021: Models for complex and global water issues, 2021. [Permanent link]

17

https://hal.inria.fr/hal-03224050/document
https://hal.inria.fr/hal-03224050/document

CHAPTER 6

Boundary conditions

The boundary edges, are always oriented so that there is no cell on the left hand side of the edge
and a cell on the right hand side.
Looking for the fluxes (F1 and F2) through the boundary.
The parameters and the state variables are fully known: qin, hin or zin (depending on the considered
model).

uin = qin/hin (6.1a)
hin = max(zin − zmin, 0.) (6.1b)

where zmin is the minimum bottom elevation on the edge.

6.1 time interpolation

The boundary time series are defined in the file hydro_boundary_time_series.txt for hydrologic
conditions

bc (t) = (6.2)

For the sake of simplicity, bc (t) is simplified in bc.

6.2 f-type boundary condition

purpose

The f-type boundary condition produces the same fluxes as in the inner cell.
Such Dirichlet boundary condition is encountered in case of uniform flow. However, the definition
of an uniform flow is valid at the scale of a fully wet cross-section that is not always coherent with
a 2D discretization of the model. Moreover, the uniform flow condition is hydraulically coherent at
the downstream (respectively upstream) boundary in case of mild (respectively steep) slope. The
effect of such boundary condition in any other hydraulic configuration is unpredictable but without
leading to any numerical problem.

formulation

SW and SP model

F1 = qin (6.3a)
F2 = qinuin + gh2

in/2 (6.3b)

DIP model

F1 = qin (6.4a)
F2 = qinuinPhiR/PhiG + gh2

in/2 (6.4b)

19

6. Boundary conditions

DDP model

F1 = θωuin (6.5a)
F2 = θωu

2
in + pressureforce (6.5b)

pressureforce = pressureForceOmegaOfZ(celR, zin) (6.5c)

6.3 c-type boundary condition

purpose

The c-type boundary condition imposes the Froude number value at the boundary. This corresponds
to a depth-velocity relationship that can be seen as a classical rating curve for a rectangular weir.
This boundary condition is compulsorily an outlet thus the boundary velocity is negative: ubc ≤ 0.
The user defined boundary value bc is assumed to be positive. PFG:what happens if bc<0??

formulation

SW model

The Riemann invariant u− 2c along the wave travelling from the inner cell to the boundary is used
to determine the value of the pressure wave celerity cBC on the boundary:

cbc = uin − 2 ∗ cin

−bc− 2 (6.6)

The minus in front of bc appears as the boundary velocity ubc is negative whereas bc is positive.
For supercritical flow with Frin > 2 (thus entering the domain), the pressure wave speed at the
boundary becomes negative cbc < 0. As this is physically incoherent, cbc is bounded to 0.
The variables at the boundary are computed as: ubc = −bc ∗ cbc and hbc = c2bc/g.

F1 = u ∗ h (6.7a)
F2 = specificForce(uR, hR) + (F1 − q1) ∗ L1 (6.7b)

PFG:what if inner cell torrentiel sortant?

20

CHAPTER 7

Running the code

7.1 sw2dConverter

The sw2dSolver requires a geometry defined in a single file input/geometry.sw2d. This file includes
all the geometry properties and the BC codes for the boundary edges.
The sw2dConverter aims to produce input/geometry.sw2d from various type of inputs. The
different commands are the following (each option can be activated with a single letter (-k) or with
a keyword (–keyword)PFG:on ne voit pas les symboles "–"; for the sake of clarity, only the ’letter
way’ is presented here):

sw2dConverter input/2DMFILE -d -X a single 2dm file (input/2DMFILE) is use to specify all the
geometry. The BC codes are set by the nodestring numbers. For the boundary edges for
which there is no nodestring, the BC code is set to X. X have to be positive.

sw2dConverter input/2DMFILE -b input/BCFILE -d -X a single 2dm file (input/2DMFILE) is use
to specify the cells and nodes. The BC codes are defined (in the ’old way’) in the bc file
(input/BCFILE). The nodestrings specified in the 2dm file are simply ignored. For the
boundary edges that are not in the bc file (input/BCFILE), the BC code is set to X. X have
to be positive.

sw2dConverter input/GEOFILE a single geo file (input/GEOFILE) is used to specify all the
geometry. When importing a geometry file, no other option can be used.

• Whatever the command used, sw2dConverter will raise an error message and stop if a file
input/geometry.sw2d already exists. To write over the existing file, the argument -f can be
used.

• the BCs with a code "0" (either specified from the .2dm, the .bc or the -d option) leads to no
computation of the fluxes at this edge:

F1 = 0
F2 = hcellu

2
cell + 0.5gh2

cell + (F1 − hcellucell) max(ucell + ccell, 0)

PFG:on ne voit pas les symboles "–"
letter keyword description
-b –bc specify the input boundary file
-d –default Compulsory option; specify the default BC code
-f –force overwrite on existing file input/geometry.sw2d

7.2 sw2dModeler

The sw2dModeler allows to run the simulation using an user-interface (GUI). In the current version,
a simulation cannot be created from the GUI (See section 7.2).
The interface can be launched by:

on windows double-clicking on the PFG:ADD the correct name shortcut on the desktop or with
the PFG:ADD the correct name shortcut in the Start Menu

on Unix running the ./sw2dModelercommand line

21

7. Running the code

Figure 7.1: SW2D User interface fig:sw2dGUI

on MacOS PFG:Carole, Antoine: à completer

The interface is presented on figure 7.1 and includes three parts:

red rectangle control zone (see 7.2)

green rectangle view zone (see 7.2)

blue rectangle log message zone (see 7.2)

Control zonesubsec:
controlZone

The control zone contains the buttons activating the different menus to control the simulation.

Start Simulationsubsubsec:
StartSim

Figure 7.2: Start Simulation menu fig:my_label

Prior to open a simulation folder, the user should insure (and create if necessary) that an input
subfolder exists and contains an input.sw2d file (even empty) (see the simulation folder structure in
PFG:add ref). Depending on the type of simulation, other files may be required but in any case,
the GUI will be able to start and display for the missing files PFG:check this.

22

7.3. sw2dSolver

Board Activators

This menu allows to show or hide the corresponding panels (PFG:list the activators).

Physical Parameters

Simulation Parameters

Output Parameters

Help Menu

Configuration

View zonesubsec:viewZone

This zone allows to display the simulation results, either as a Field View (i.e. a spatial representation
at a given time) or a Probe View (i.e. a temporal evolution at a given location).

Log message zonesubsec:
messageZone The different messages are prompted in the zone. Each message is associated to a category allowing

for an easy sort (using the buttons Trace, Debug, Info, Warn, Error, Fatal).
When the Auto scroll tick-box is activated, the the message zone automatically scroll to display the
last message. For simulation with a lot of verbosity this option is known to slow down (or even
freeze) the GUI refresh.

7.3 sw2dSolver

The sw2dSolver is run in command line:

sw2dSolver -o1 -o2...

where o1 and o2 are the computational options. Some options have to be followed by a user-defined
value. Each option can be activated with a single letter (-k) or with a keyword (–keyword)PFG:on
ne voit pas les symboles "–".

PFG:on ne voit pas les symboles "–"
letter keyword description
-f <FOLDER> –folder <FOLDER> specifies the simulation folder <FOLDER>
-h –help displays all the available command
-n –norun the simulation only performs the initialisation

process and stops just before the computational
part

-v –version displays the version number

23

CHAPTER 8

Simulation structure

Each SW2D simulation is organized on a file/folder structure that has to be respected. A simulation
folder FOLDER contains at least 5 folders:

input folder containing the input files. This folder is compulsory to run
sw2dSolver.
log This folder contains the log files allowing to trace the computation
process. If the folder does not exists prior to a new simulation, it is created
by sw2dSolveror sw2dModeler. If the folder exists at the beginning of a
simulation, the previous content is deleted.
misc This folder contains the simulation results in a binary format
(not readable by user). These files are used mainly by the GUI for the
visualisation. If the folder does not exists prior to a new simulation,
it is created by sw2dSolveror sw2dModeler. If the folder exists at the
beginning of a simulation, the previous content is deleted.
output This folder contains the simulation results in an user-readable
(text) format. If the folder does not exists prior to a new simulation,
it is created by sw2dSolveror sw2dModeler. If the folder exists at the
beginning of a simulation, the previous content is deleted.
primary_files This folder contains the files necessary to construct
geometry.sw2d. It is compulsory for running sw2dConverterbut unused
by sw2dModelerand sw2dSolver. Since the content of this folder is not
deleted by the program, the user can store complementary files.

25

CHAPTER 9

Input File Format

This chapter describes the format of the parameter files in the input folder.

9.1 Boussinesq_map.txt

Purpose

The Boussinesq momentum distribution coefficient (denoted by β in the governing equations)
accounts for non-uniform flow velocity profiles in the computation of the momentum flux over a
cross-section Γ

β = u2

u2 ≥ 1 (9.1)

TODO : move the equation to physicalmodel.tex where the overbar denotes the average over a flow
cross-section. The condition β ≥ 1 is necessary for the preservation of model hyperbolicity and
solution well-posedness.

The Boussinesq coefficient is a cell attribute. Two options are available for specifying this coefficient:

1. β is uniform over the entire domain, in which case providing a single value is sufficient,

2. β is spatially variable, in which case its value must be specified on a cell-by-cell basis.

Format description

File format for a uniform Boussinesq coefficient. Bold : keyword, must appear as such in the file.
<Tab>: tabulation character.
Field(s) Comment(s)
Unif <Tab> 1 The value 1 for the flag indicates that β is uniform
==== Default Param Section separator line, leave unchanged
Boussinesq Comment line, leave unchanged
beta Uniform value
==== Distrib Section separator line, leave unchanged

File format for a spatially variable Boussinesq coefficient. Bold : keyword, must appear as such in
the file. <Tab>: tabulation character.
Field(s) Comment(s)
Unif <Tab> 0 The zero value indicates that β is spatially variable
==== Default Param Section separator line, leave unchanged
Boussinesq Comment line, leave unchanged
beta Uniform value, will be ignored because the flag is 0
==== Distrib Section separator line, leave unchanged
beta[i] β value for each cell. Running index i is the index of the cell in

the mesh. One value per line.

Sample files

Example#1. β is uniform over the domain.

27

9. Input File Format

Unif 1
==== Default Param
Boussinesq
2.

Example#2. β is variable over the domain, the mesh is made of 3 cells.

Unif 0
==== Default Param
Boussinesq
2.
==== Distrib
1.2
1.1
3.5

9.2 Buildings_exchange_map.txt

TODO: to be modified if new model versions

Purpose

In porosity models, part of the connected, overland water may be exchanged with buildings, that
are considered as stagnant zones. The volume exchange rate between the overland and stagnant
regions is proportional to the difference of free surface elevation via an exchange constant k_b, as
in [Gui12]. The exchange law uses three parameters:

• the difference ∆z between the building basement and the overland bottom elevations

• the plan view fraction ("porosity") φb of space occupied by the buildings

• an exchange coefficient kb in s−1.

Format description

File format for a uniform parameter set. Bold : keyword, must appear as such in the file. <Tab>:
tabulation character.
Field(s) Comment(s)
Unif <Tab> 1 Flag is 1 because the parameter set is uniform
==== Default Param Section separator line, leave unchanged
delta_z <Tab> phi_b <Tab> k_b Comment line, leave unchanged
delta_z <Tab> phi_b <Tab> k_b Uniform values for ∆zb, φb and kb

==== Distrib Section separator line, leave unchanged

File format for a spatially variable parameter set. Bold : keyword, must appear as such in the file.
<Tab>: tabulation character.
Field(s) Comment(s)
Unif <Tab> flag Flag is 0 because the parameter set is spatially variable
==== Default Param Section separator line, leave unchanged
delta_z <Tab> phi_b <Tab> k_b Comment line, leave unchanged
delta_z <Tab> phi_b <Tab> k_b Uniform values for ∆zb, φb and kb (will be ignored because

the flag is 0)
==== Distrib Section separator line, leave unchanged
delta_z[i] <Tab> phi_b[i] <Tab>
k_b[i]

∆zb, φb and kb values for each cell. Running index i is the
index of the cell in the mesh.

Sample file

Case of a uniform parameter distribution.

28

9.3. DDP_cell_porosity_map.txt

Unif 1
==== Default Param
Delta_z Phi_b k_b
-1. 0.1 1e-3

9.3 DDP_cell_porosity_map.txt
sec_Model!

Hyperbolic!DDP!
cellPorosityMap

Purpose

The Depth-Dependent Porosity (DDP) model requires that the variations in the storage porosity
φΩ with the water depth be specified on a cell-by-cell basis. This is the domain-based φΩ(z) law in
the original publication [Gui+18]. The code provides 5 types of pre-defined law:

• Law type -1: the porosity law is specified as a sequence of couples (zi, φi), where the zi

are ranked in ascending order. The zi are relative to the ground surface elevation, that is
computed from the 2D mesh.

• Law type 0: the porosity law is specified by a sequence of elevations (z1, . . . , zN) in ascending
order. The porosity is piecewise constant, equal to i/N between zi and zi + 1 and to unity
above zN . The zi are relative to the ground surface elevation as in Law type -1.

• Law type 1: the porosity is zero below an elevation z1 relative to the ground elevation, and
equal to φ1 above.

• Law type 2: the porosity varies linearly from φ1 to φ2 between elevations z1 and z2 relative
to the ground surface. It is zero below z1 and φ2 above z2.

• Law type 3: the porosity varies linearly from φ1 to φ2 between elevations z1 and z2 relative
to the ground surface. It is zero below z1 and φ3 above z2.

If the laws are spatially distributed, each cell may obey a different law type.

Law type specification format

Five porosity law types are allowed in the current version of the software.

Law type Parameters to be provided in file
(separated using <Tab> characters)

Comments

-1 -1 N z1 φ1 . . . zN φN N : number of (z, φ) couples.
0 0 N z1 . . . zN N : number of points in the φ(z) law. zi : elevations

relative to the ground level , by ascending order.
1 1 z1 φ1 z1: altitude (relative to local bottom elevation) above

which φ = φ1; φ = 0 for z < z1
2 2 z1 z2 φ1 φ2 Porosity φ is zero below z1, varies linearly from φ1 to

φ2 between z1 and z2, is equal to φ2 for z > z2
3 3 z1 z2 φ1 φ2 φ3 Porosity φ is zero below z1, varies linearly from φ1 to

φ2 between z1 and z2, is equal to φ3 for z > z2

Input file format

File format for a uniform parameter set. Bold : keyword, must appear as such in the file. <Tab>:
tabulation character.
Field(s) Comment(s)
Unif <Tab> 1 Flag is 1 because the parameter set is uniform
NtabMax <Tab> NtabMax NtabMax is the number of vertical discretization levels used

for the φΩ(z) law
==== Default Param Section separator line, leave unchanged
Uniform parameter set Comment line, leave unchanged
Parameter set The parameter set should obey the format given in the

previous table
==== Distrib Section separator line, leave unchanged

29

9. Input File Format

File format for a spatially distributed parameter set. Bold : keyword, must appear as such in the
file. <Tab>: tabulation character.
Field(s) Comment(s)
Unif <Tab> 0 Flag is 0 because the parameter set is spatially variable
NtabMax <Tab> NtabMax NtabMax is the number of vertical discretization levels used

for the φΩ(z) law
==== Default Param Section separator line, leave unchanged
Uniform parameter set Comment line, leave unchanged
Parameter set The parameter set should obey the format given in the

previous table
==== Distrib Section separator line, leave unchanged
Parameter set [i] Parameter set, provided on a cell-by-cell basis. Index i runs

sequentially from 1 to the number of cells. The parameter set
should obey the format given in the Law type specification
format table

Sample files

Example#1: Uniform law type 2

The porosity varies linearly from φ1 = 0. to φ2 = 1. between z1 = 3 m and z2 = 10 m.

Unif 1
NtabMax 50
==== Default Param
Type Parameters(type)
2 3. 10. 0. 1.
==== Distrib

Example#2: Distributed law type

There are 3 cells in the model, the law types for cells 1, 2 and 3 are respectively 1, 0 and -1. The
law type 0 in Cell 2 is given by 5 elevations. The Law type -1 in Cell 3 uses 2 (z, φ) couples.

Unif 0
NtabMax 50
==== Default Param
Type Parameters(type)
2 3. 10. 0. 1.
==== Distrib
Type Parameters(type)
1 2.3 0.5
0 5 0.1 0.4 0.7 1.2 2.5
-1 2 0.1 0.3 2.7 0.95

9.4 DDP_edge_porosity_map.txt
sec_Model!

Hyperbolic!DDP!
edgePorosityMap

Purpose

The Depth-Dependent Porosity (DDP) model requires that the variations in the connectivity
porosity φΓ with the water depth be specified on an interface-per-interface basis. This is the domain-
based φΓ(z) law in the original publication [Gui+18]. The code provides 5 types of pre-defined law.
They are described in Subsection 9.3.

Format description

The format is exactly the same as that of the cell porosity map, see 9.3. The only difference is that
the running index i goes from 1 to the number of interfaces (not the number of cells).

Sample files

See Subsection 9.3.

30

9.5. DIP_cell_porosity_map.txt

9.5 DIP_cell_porosity_map.txt
sec_Model!

Hyperbolic!DIP!
cellPorosityMap

Purpose

The Dual Integral Porosity (DIP) model requires that the storage porosity φΩ be specified on a
cell-by-cell basis [GBJ17].

Input file format

File format for a uniform storage porosity. Bold : keyword, must appear as such in the file. <Tab>:
tabulation character.
Field(s) Comment(s)
Unif <Tab> 1 Flag is 1 because φΩ is uniform
==== Default Param Section separator line, leave unchanged
PhiW Comment line, leave unchanged
Phi_Omega The uniform φΩ value
==== Distrib Section separator line, leave unchanged

File format for a spatially distributed parameter set. Bold : keyword, must appear as such in the
file. <Tab>: tabulation character.
Field(s) Comment(s)
Unif <Tab> 0 Flag is 0 because φΩ is spatially variable
==== Default Param Section separator line, leave unchanged
PhiW Comment line, leave unchanged
Phi_Omega This value will be ignored because Flag = 1
==== Distrib Section separator line, leave unchanged
Phi_Omega [i] Storage porosity φΩ, provided on a cell-by-cell basis. Index

i runs sequentially from 1 to the number of cells.

Sample files

Example#1: Uniform storage porosity

The porosity is identical for all cells, equal to 0.5.

Unif 1
==== Default Param
PhiW
0.5
==== Distrib

Example#2: Distributed storage porosity

There are 3 cells in the model, cells 1 to 3 have storage porosities of 0.5, 0.7 and 0.1 respectively.

Unif 0
==== Default Param
PhiW
0.5
==== Distrib
0.5
0.7
0.1

9.6 DIP_edge_porosity_map.txt
sec_Model!

Hyperbolic!DIP!
edgePorosityMap

Purpose

The Dual Integral Porosity(DIP) model requires that the variations in the connectivity porosity φΓ
be specified on an interface-per-interface basis [GBJ17].

31

9. Input File Format

Format description

The format is exactly the same as that of the cell porosity map, see 9.5. The only difference is that
the running index i goes from 1 to the number of interfaces (not the number of cells).

Sample files

See Subsection 9.5.

9.7 SP_cell_porosity_map.txt
sec_Model!

Hyperbolic!SP!
cellPorosityMap

Purpose

The depth-independent Single Porosity (DIP) [GS06] model requires that the porosity φ be specified
on a cell-by-cell basis.

Input file format

File format for a uniform porosity. Bold : keyword, must appear as such in the file. <Tab>:
tabulation character.
Field(s) Comment(s)
Unif <Tab> 1 Flag is 1 because φ is uniform
==== Default Param Section separator line, leave unchanged
Phi Comment line, leave unchanged
Phi The uniform φ value
==== Distrib Section separator line, leave unchanged

File format for a spatially distributed parameter set. Bold : keyword, must appear as such in the
file. <Tab>: tabulation character.
Field(s) Comment(s)
Unif <Tab> 0 Flag is 0 because φ is spatially variable
==== Default Param Section separator line, leave unchanged
PhiW Comment line, leave unchanged
Phi This value will be ignored because Flag = 1
==== Distrib Section separator line, leave unchanged
Phi [i] Storage porosity φ, provided on a cell-by-cell basis. Index i

runs sequentially from 1 to the number of cells.

Sample files

Example#1: Uniform porosity

The porosity is identical for all cells, equal to 0.5.

Unif 1
==== Default Param
PhiW
0.5
==== Distrib

Example#2: Distributed porosity

There are 3 cells in the model, cells 1 to 3 have porosities of 0.5, 0.7 and 0.1 respectively.

Unif 0
==== Default Param
PhiW
0.5
==== Distrib
0.5
0.7
0.1

32

9.8. extraction_times_list.txt

9.8 extraction_times_list.txt

Purpose

This file contains a line for each extra result to display at chosen times that may be different from
the storing times defined by dtstor parameter.
This option is activated by the presence of the file in the input folder (no specific parameter is
required in the input.sw2d).
The results are stored in new output files (one per chosen time) with the same format as results
stored with the dtstor timestep.

Format description

Each line contains the time in seconds from the beginning of the simulation, at which the results
extraction is expected, following by a chosen name for this result.
Times do not need to be ordered in the file.
Lines starting with a hash are ignored as well as empty lines or space only lines. If two lines give
the same time, the second one is ignored.
Note that the name following the time is mandatory.

Example

PFG:Répertoire d’exemple: mettre ce fichier dans distrib/file_template/input/... With the
following input file

#
some extractions times for specific data extractions
#
3 extract_time_3

10 time_10

3 extract_time_1
#20 extract_time_20

the code will generate 2 output files with names:

ResultsTime_p0000d00m03s000_extract_time_3.csv
ResultsTime_p0000d00m10s000_time_10.csv

Note that the real extraction time is the nearest time computed according to the current timestep
and may be different from the chosen time.

9.9 friction_chezy_map.txt

Purpose

If Chezy’s law is selected for the friction model, the Chezy coefficient must be provided on a
cell-by-cell basis. The Chezy may be anisotropic. Therefore, it is a tensor. It is specified in the
form (C1, C2, αC), where C1 and C2 are the friction coefficients in the two principal directions of
the horizontal plane, and αC is the angle of the first principal direction with the x−axis.

Input file format

File format for a uniform Chezy tensor C. Bold : keyword, must appear as such in the file. <Tab>:
tabulation character.
Field(s) Comment(s)
Unif <Tab> 1 Flag is 1 because C is uniform
==== Default Param Section separator line, leave unchanged
Chezy_1 Chezy_2 alpha Comment line, leave unchanged
Chezy_1 <Tab> Chezy_2 <Tab>
alpha

The uniform values for C1, C2 and αC (αC in degrees)

==== Distrib Section separator line, leave unchanged

33

9. Input File Format

File format for a spatially distributed parameter set. Bold : keyword, must appear as such in the
file. <Tab>: tabulation character.
Field(s) Comment(s)
Unif <Tab> 0 Flag is 0 because C is spatially variable
==== Default Param Section separator line, leave unchanged
Chezy_1 Chezy_2 alpha Comment line, leave unchanged
Chezy_1 Chezy_2 alpha This value will be ignored because Flag = 1
==== Distrib Section separator line, leave unchanged
Chezy_1[i] <Tab> Chezy_2[i]
<Tab> alpha[i]

Values for C1, C2 and αC (αC in degrees), provided on a
cell-by-cell basis. Index i runs sequentially from 1 to the
number of cells.

Sample files

Example#1: Uniform Chezy tensor

The Chezy tensor is uniform for all cells. It is respectively 60 and 70 in the 1st and 2nd principal
directions. The 1st principal direction makes a 45 degree angle with the x−axis.

Unif 1
==== Default Param
Chezy_1 Chezy_2 alpha
60. 70. 45.
==== Distrib

Example#2: Distributed Chezy tensor

There are 3 cells in the model. The Chezy is respectively 60 and 70 in the 1st and 2nd principal
directions. Its angle with the x−axis is respectively 0, 10 and 30 degrees in Cells 1, 2 and 3.

Unif 0
==== Default Param
Chezy_1 Chezy_2 alpha
60. 70. 45.
==== Distrib
60. 70. 0.
60. 70. 10.
60. 70. 30.

9.10 friction_manning_map.txt

Purpose

If Manning’s law is selected for the friction model, the Manning coefficient must be provided on
a cell-by-cell basis. The Manning may be anisotropic. Therefore, it is a tensor. It is specified in
the form (nM1 , nM2 , αnM

), where nM1 and nM2 are the friction coefficients in the two principal
directions of the horizontal plane, and αnM

is the angle of the first principal direction with the
x−axis.

Input file format

File format for a uniform Manning tensor. Bold : keyword, must appear as such in the file. <Tab>:
tabulation character.

34

9.11. friction_strickler_map.txt

Field(s) Comment(s)
Unif <Tab> 1 Flag is 1 because nM is uniform
==== Default Param Section separator line, leave unchanged
Manning_1 Manning_2 alpha Comment line, leave unchanged
Manning_1 <Tab> Manning_2 <Tab>
alpha

The uniform values for nM1 , nM2 and αnM
(αnM

in degrees)

==== Distrib Section separator line, leave unchanged

File format for a spatially distributed Manning tensor. Bold : keyword, must appear as such in the
file. <Tab>: tabulation character.
Field(s) Comment(s)
Unif <Tab> 0 Flag is 0 because nM is spatially variable
==== Default Param Section separator line, leave unchanged
Manning_1 Manning_2 alpha Comment line, leave unchanged
Manning_1 Manning_2 alpha This value will be ignored because Flag = 1
==== Distrib Section separator line, leave unchanged
Manning_1[i] <Tab> Manning_2[i]
<Tab> alpha[i]

Values for nM1 , nM2 and αnM
(αnM

in degrees), provided
on a cell-by-cell basis. Index i runs sequentially from 1 to
the number of cells.

Sample files

Example#1: Uniform Manning tensor

The Manning tensor is uniform for all cells. It is respectively 0.025 and 0.02 in the 1st and 2nd
principal directions. The 1st principal direction makes a 45 degree angle with the x−axis.

Unif 1
==== Default Param
Manning_1 Manning_2 alpha
0.025 0.02 45.
==== Distrib

Example#2: Distributed Manning tensor

There are 3 cells in the model. The Manning is respectively 0.025 and 0.2 in the 1st and 2nd
principal directions. Its angle with the x−axis is respectively 0, 10 and 30 degrees in Cells 1, 2 and
3.

Unif 0
==== Default Param
Manning_1 Manning_2 alpha
0.025 0.02 45.
==== Distrib
0.025 0.02 0.
0.025 0.02 10.
0.025 0.02 30.

9.11 friction_strickler_map.txt

Purpose

If Strickler’s law is selected for the friction model, the Strickler coefficient must be provided on a
cell-by-cell basis. The Strickler may be anisotropic. Therefore, it is a tensor. It is specified in the
form (K1,K2, αK), where K1 and K2 are the friction coefficients in the two principal directions of
the horizontal plane, and αK is the angle of the first principal direction with the x−axis.

Input file format

File format for a uniform Strickler tensor. Bold : keyword, must appear as such in the file. <Tab>:
tabulation character.

35

9. Input File Format

Field(s) Comment(s)
Unif <Tab> 1 Flag is 1 because K is uniform
==== Default Param Section separator line, leave unchanged
Strickler_1 Strickler_2 alpha Comment line, leave unchanged
Strickler_1 <Tab> Strickler_2
<Tab> alpha

The uniform values for K1, K2 and αK (αK in degrees)

==== Distrib Section separator line, leave unchanged

File format for a spatially distributed Strickler tensor. Bold : keyword, must appear as such in the
file. <Tab>: tabulation character.
Field(s) Comment(s)
Unif <Tab> 0 Flag is 0 because K is spatially variable
==== Default Param Section separator line, leave unchanged
Strickler_1 Strickler_2 alpha Comment line, leave unchanged
Strickler_1 Strickler_2 alpha This value will be ignored because Flag = 1
==== Distrib Section separator line, leave unchanged
Strickler_1[i] <Tab>
Strickler_2[i] <Tab> alpha[i]

Values for K1, K2 and αK (αK in degrees), provided on a
cell-by-cell basis. Index i runs sequentially from 1 to the
number of cells.

Sample files

Example#1: Uniform Strickler tensor

The Strickler tensor is uniform for all cells. It is respectively 40 and 50 in the 1st and 2nd principal
directions. The 1st principal direction makes a 45 degree angle with the x−axis.

Unif 1
==== Default Param
Strickler_1 Strickler_2 alpha
40. 50. 45.
==== Distrib

Example#2: Distributed Strickler tensor

There are 3 cells in the model. The Strickler is respectively 40 and 50 in the 1st and 2nd principal
directions. Its angle with the x−axis is respectively 0, 10 and 30 degrees in Cells 1, 2 and 3.

Unif 0
==== Default Param
Strickler_1 Strickler_2 alpha
40. 50. 45.
==== Distrib
40. 50. 0.
40. 50. 10.
50. 50. 30.

9.12 Hydro_boundary_time_series.txt

Purpose

Format description

Example

36

9.13. Infiltration_map.txt

9.13 Infiltration_map.txt

Purpose

Format description

Example

9.14 initial_conditions_map.txt
sec_

initialConditionsMapPurpose

The well-posedness of the shallow water problem requires initial conditions and boundary conditions
be provided. The present section deals with the specification of initial conditions.
The initial conditions may be either uniform or spatially distributed. They are provided on a
cell-by-cell basis. Two types of variable must be provided : the water depth or free surface elevation,
and the flow velocity or unit discharge components.

Format description

File format for a uniform initial condition. Bold : keyword, must appear as such in the file. <Tab>:
tabulation character.
Field(s) Comment(s)
Unif <Tab> 1 Flag is 1 because the initial conditions are uniform
==== Default Param Section separator line, leave unchanged
z or h <Tab> u or q <Tab> v or r h: the first numerical value in the record is the water depth

z: the first numerical value in the record is the surface
elevation
u: the second numerical value in the record is the x− flow
velocity
q: the second numerical value in the record is the x− unit
discharge
v: the third numerical value in the record is the y− flow
velocity
r: the third numerical value in the record is the y− unit
discharge

z or h <Tab> u or q <Tab> v or r The three numerical values fr the uniform initial condition
==== Distrib Section separator line, leave unchanged

File format for a spatially variable initial condition. Bold : keyword, must appear as such in the
file. <Tab>: tabulation character.
Field(s) Comment(s)
Unif <Tab> 1 Flag is 0 because the initial conditions are spatially variable
==== Default Param Section separator line, leave unchanged
Val_1 <Tab> Val_2 <Tab> Val_3 These 3 numerical values will be ignored because Flag = 0
==== Distrib Section separator line, leave unchanged
z[i] or h[i] <Tab> u[i] or q[i]
<Tab> v[i] or r[i]

h: the first numerical value in the record is the water depth

z: the first numerical value in the record is the surface
elevation
u: the second numerical value in the record is the x− flow
velocity
q: the second numerical value in the record is the x− unit
discharge
v: the third numerical value in the record is the y− flow
velocity
r: the third numerical value in the record is the y− unit
discharge

z[i] or h[i] <Tab> u[i] or q[i]
<Tab> v[i] or r[i]

Initial conditions for cell i, index i running sequentially from
1 to the number of cells

37

9. Input File Format

Sample files

Example #1: uniform initial conditions (elevation-velocity)

The initial condition is uniform. The free surface elevation (1 m) and the flow velocity (0 m/s in
both directions of space) are the same in all cells.

Unif 1
==== Default Param
z u v
1 0 0
==== Distrib

Example #2: uniform initial conditions (depth-unit discharge)

The initial condition is uniform. The water depth (2 m) and the unit discharge (1 m2/s in the
x−direction, 0 m2/s in the y−direction) are the same in all cells.

Unif 1
==== Default Param
h q r
2 1 0
==== Distrib

Example #3: distributed initial conditions

There are 3 cells in the model. In Cell#1, the initial free surface elevation is 10m, the flow velocity
is zero. In Cell#2, the free surface elevation is 10m, the x−velocity is 1 m/s and the y−velocity is
zero. In the third cell, the free surface elevation is 5 m, and the initial flow velocity is zero.

Unif 0
==== Default Param
z u v
1 0 0
==== Distrib
10. 0. 0.
10. 1. 0.
5. 0. 0.

9.15 input.sw2d

Purpose

This file is the main file controlling the simulation. It defines the models that have to be used and
the key parameters.

Format description

This text file contains a parameter per line. The order of the parameters do not matter. Empty
lines or lines starting with hash ’#’ or equal ’=’ signs are ignored.
The spelling of the parameters is not case sensitive.
If the same parameter is defined several times in the input.sw2d, SW2D will consider the last
provided value.
Known parameters are listed hereafter: PFG:sort by name

2dmfile is a parameter naming the 2dm file to be used in the geometry settings.PFG:to be adapted
once the 2dm-Geo converter will be ready

crmax {Default value = 1} defines the maximal Courant value to compute the timestep. Any
positive value is allowed but the algorithm will automatically prevent large values, known to
lead to instability issues (typically Crmax > 1 for an explicit scheme).

divcorr {Default value = none} parameter to activate the divergence correction (see section
PFG:add reference). Allowed values:

38

9.15. input.sw2d

none no divergence correction
limit_flux prevents divergence by reducing the computing fluxes through the interfaces. The

flux reduction implies an iterative process. The parameter nit_div_max have to be
definePFG:really or default value??? For sure, nit_div_max cannot be negative. Is
there a coeff for the flux reduction?

limit_timestep prevents divergence by reducing the computational time-step

dtmap {Default value = 10} specifies the interval of time to store the hydrodynamics results map
(see ??PFG:add reference to ResultHydro...)

dtmax {Default value = 10} specifies the maximal computational timestep

dtprobes {Default value = 100} specifies the time window to store the probes results (see
section??PFG:add reference to ResultProbes...). This parameter is used only if results at
the probes location is stored (this is simply activated filling probes_location.txt in the input
folder) - see section 9.18.

gravity {Default value = 9.81} specifies the value of the gravitational acceleration.

hmin {Default value = 10−5} represents the minimal water depth value considered by the Riemann
solvers. When the water depth is below this value, the corresponding (cell-computed) unit
discharge is neglected.

model_friction {Default value = none} sets how the basement friction effect is reproduced. Allowed
values:

none no friction effect computed
chezy friction effect computed using the Chezy formulation (see section ??PFG:add ref).
manning friction effect computed using the Manning formulation (see section ??PFG:add

ref).
strickler friction effect computed using the Strickler formulation (see section ??PFG:add

ref).

model_hyperb {Default value = none} sets the model used to compute the hyperbolic part of the
equation (see section ??PFG:add ref). Allowed values:

none no hyperbolic computation
ddp Depth-Dependant Porosity model (see section ??PFG:add ref).
dip Dual-Integral Porosity model (see section ??PFG:add ref).
sp Single Porosity model (see section ??PFG:add ref).
swes Shallow water model (see section ??PFG:add ref).

model_wind {Default value = none} sets how the wind effect is computed. Allowed values:

none no wind effect computation
smithbanke wind effect computation using the Smith & Banke model (see section ??PFG:add

ref).

negative_depth_detection {Default value = 0} activates the negative depth detection. Allowed
values:

0 no check
1 stop the program if the water depth is negative.

nitdivmax {Default value = 0} sets the maximal number of iterations allowed in the divergence
correction process. This parameter is used only if the parameter divcorr is set to limit_flux.

num_scheme defines the numerical scheme used to compute the hyperbolic part of the equation.
Default and other possible values depend on the chosen hyperbolic model:
value for the parameter model_hyperb default value allowed value

ddp godunov godunov
dip godunov godunov
sp godunov godunov
swes godunov godunov, muscl_evr

See sec-

tion ??PFG:add ref for details regarding numerical scheme implementations.

39

9. Input File Format

storeflag {Default value = default} defines stored variables in hydrodynamics results maps.
PFG:reprendre ce point si on fait des formats différents pour chaque modèle Allowed values:
none, default and all. See section ??PFG:add ref to resulthydro for the list of stored
variables, depending on the user-defined hyperbolic model (parameter model_hyperb).

t0 {Default value = 0} Starting time of the simulation.PFG:need for mr_tests with t0 not 0
PFG:later one: is there a link between t0 and the hotstart?

tmax {Default value = 100} Ending time of the simulation.

verb_map_boussinesq {Default value = 1} specifies if the Boussinesq coefficients map used
in the computation has to be written (0: no / > 0: yes) in log/boussinesq.txt. Even if
verb_map_boussinesq is set to 1, the file log/boussinesq.txt is written only if the user-
defined hyperbolic model AR:comprends pasinvolved the Boussinesq coefficient.PFG:add a
list of the hyperbolic models (all except swes?) using the Boussinesq coefficient

verb_map_init_cond {Default value = 1} specifies if the initial conditions map used in the
computation has to be written (0: no / > 0: yes) in log/initial_conditions_map.txt.

verb_map_porosity {Default value = 1} {Default value = 1} specifies if the poros-
ity values maps used in the computation have to be written (0: no / > 0:
yes). The files generated depend also on the user-defined hyperbolic model:
value for the parameter model_hyperb files generated

ddp
DDP_debug.txt
DDP_PhiG.txt
DDP_PhiW.txt

dip DIP_PhiG.txt
DIP_PhiW.txt

sp SP_PhiW.txt
swes

verb_properties_cells {Default value = 1} specifies if the cells properties have to be written (0:
no / > 0: yes) in log/cells.txt.

verb_properties_interfaces {Default value = 1} specifies if the interfaces properties have to be
written (0: no / > 0: yes) in log/interfaces.txt.

verb_properties_nodes {Default value = 1} specifies if the nodes properties have to be written
(0: no / > 0: yes) in log/nodes.txt.

verb_process_hyperb {Default value = 0} specifies the verbosity level for of the functions
computing the hyperbolic part. The higher the value, the stronger the verbosity (0 = no
verbosity)

verb_process_overall {Default value = 0} specifies the level of verbosity of the main workflow.
The higher the value, the stronger the verbosity (0 = no verbosity).

verb_process_time_series {Default value = 0} specifies the level of verbosity of the time series
reader function. The higher the value, the stronger the verbosity (0 = no verbosity)

Example

= unread line
sign to comment a full line : (# =)
=== Model
model_hyperb ddp
num_scheme godunov
tmax 100.
dtmax 1.5
dtmap 10.
dtprobes 15.
========
model_friction chezy
========
2dmfile mesh.2dm

40

9.16. precipitation_boundary_time_series.txt Why "boundary"? It is a source term.

9.16 precipitation_boundary_time_series.txt Why "boundary"? It is a
source term.

Purpose

SW2D takes as an input a precipitation field that is variable in both space and time. At a
given time, the precipitation rate is taken uniform over zones (also called "stations") within the
computational domain. The shape and extension of these zones remain constant over the entire
simulation. The purpose of the file precipitation_time_series.txt is to specify the variations
of the precipitation rate with time on a station-by-station basis. The stations are assigned integer
numbers, that are not necessarily consecutive.

Warning. Assume that n and N are respectively the smallest and largest (integer) station numbers
in a given station code map (See Section ??). Then, although there are only N − n+ 1 "active"
stations in the model, the time series file should incorporate the time series for N stations.

Format description

File format. Bold : keyword, must appear as such in the file. <Tab>: tabulation character.
Field(s) Comment(s)
#Precipitation time series Comment/header line
#Precipitation stations Comment/header line
N Number of stations in the time series file
Section separator line, leave unchanged
#t + N times (<Tab> P) Comment line, leave unchanged
t + N times (<Tab> P) t : time in seconds ; P: precipitation rate in m/s

Sample file

There are 3 stations in the model.

#Precipitation time series for static wind test
#wind stations
3
#
t P P P
0 1e-6 0e0 1e-5
300 1e-6 1e-5 0e0
360 0e0 0e0 0e0

9.17 Precipitation_station_codes_map.txt

Purpose

Input file format

File format for a uniform station code. Bold : keyword, must appear as such in the file. <Tab>:
tabulation character.
Field(s) Comment(s)
Unif <Tab> 1 Flag is 1 because there is only one wind station for the

entire domain (uniform station map)
==== Default Param Section separator line, leave unchanged
Sta Comment line, leave unchanged
Sta The (uniform) precipitation station code to be used over

the entire domain
==== Distrib Section separator line, leave unchanged

File format for a spatially distributed wind station code. Bold : keyword, must appear as such in

41

9. Input File Format

the file. <Tab>: tabulation character.
Field(s) Comment(s)
Unif <Tab> 0 Flag is 0 because there is more than one wind station for

the entire domain
==== Default Param Section separator line, leave unchanged
Sta Comment line, leave unchanged
Sta This value will be ignored because Flag is zero
==== Distrib Section separator line, leave unchanged
Sta[i] Precipitation station codes, provided on a cell-by-cell basis.

Index i runs sequentially from 1 to the number of cells.

Sample files

Example#1: Uniform wind station code

In this example, the station code is uniformly 1 over the entire domain.

Unif 1
==== Default Param
Xind
1
==== Distrib

Example#2: Distributed wind station code

In this example, there are three cells in the domain. Cells 1 and 3 have station code 1, cell 2 has
station code 4.

Unif 0
==== Default Param
Xind
1
==== Distrib
1
4
1

9.18 probes_location.txt
sec:

probes_location Purpose

Format description

Example

9.19 singular_head_loss_map.txt

Purpose

Format description

Example

9.20 wind_station_codes_map.txt
sec_SourceTerm!

Wind!
windStationMap

Purpose

SW2D takes as an input a wind forcing that is variable in both space and time. At a given time,
the wind is taken uniform over zones (also called "stations") within the computational domain.
The shape and extension of these zones remain constant over the entire simulation. The purpose

42

9.20. wind_station_codes_map.txt

of the file wind_stations_codes_map.txt is to specify the spatial extension of these zones on a
cell-by-cell basis. The stations are assigned integer numbers, that are not necessarily consecutive.
Non-consecutive station numbering allows maximum flexibility. Assume for instance the user is
willing to make a scenario analysis using two different time series over the same area. In the first
simulation, Station code 1 will be assigned do the entire domain. In the second run, Station code 2
will be assigned to all cells. This does not require that the compete time series be changed.

Input file format

File format for a uniform station code. Bold : keyword, must appear as such in the file. <Tab>:
tabulation character.
Field(s) Comment(s)
Unif <Tab> 1 Flag is 1 because there is only one wind station for the

entire domain (uniform station map)
==== Default Param Section separator line, leave unchanged
Xind Comment line, leave unchanged
Xind The (uniform) wind station code to be used over the entire

domain
==== Distrib Section separator line, leave unchanged

File format for a spatially distributed wind station code. Bold : keyword, must appear as such in
the file. <Tab>: tabulation character.
Field(s) Comment(s)
Unif <Tab> 0 Flag is 0 because there is more than one wind station for

the entire domain
==== Default Param Section separator line, leave unchanged
Xind Comment line, leave unchanged
Xind This value will be ignored because Flag is zero
==== Distrib Section separator line, leave unchanged
Xind[i] Wind station codes, provided on a cell-by-cell basis. Index

i runs sequentially from 1 to the number of cells.

Sample files

Example#1: Uniform wind station code

In this example, the station code is uniformly 1 over the entire domain.

Unif 1
==== Default Param
Xind
1
==== Distrib

Example#2: Distributed wind station code

In this example, there are three cells in the domain. Cells 1 and 3 have station code 1, cell 2 has
station code 4.

Unif 0
==== Default Param
Xind
1
==== Distrib
1
4
1

43

9. Input File Format

9.21 wind_time_series.txt
sec_SourceTerm!

Wind!
windTimeSeries

Purpose

SW2D takes as an input a wind forcing that is variable in both space and time. At a given time,
the wind is taken uniform over zones (also called "stations") within the computational domain.
The shape and extension of these zones remain constant over the entire simulation. The purpose
of the file wind_time_series.txt is to specify the variations of the wind speed with time on
a station-by-station basis. The stations are assigned integer numbers, that are not necessarily
consecutive.

Warning. Assume that n and N are respectively the smallest and largest (integer) station numbers
in a given station code map (See Section 9.20). Then, although there are only N − n+ 1 "active"
stations in the model, the time series file should incorporate the time series for N stations.

Format description

File format. Bold : keyword, must appear as such in the file. <Tab>: tabulation character.
Field(s) Comment(s)
#Wind time series Comment/header line
#Wind stations Comment/header line
N Number of stations in the time series file
Section separator line, leave unchanged
#t |u| angle Comment line, leave unchanged
t , N times the sequence (<Tab>
u_norm <Tab> u_angle)

t : time in seconds ; u_norm: wind speed in m/s ; u_angle:
direction the wind comes from, counted positive clockwise
from North

Sample file

#Wind time series for static wind test
#wind stations
1
#
t |u| angle
0 0.5 -90
1e6 0.5 -90

44

CHAPTER 10

Ouptut Files Format

This chapter describes the format of the result files generated by the simulation process either in
the output of the misc folders. The files in the output folder are text file whereas the misc folder
contains binary files.

10.1 output/ResultBoundariesFlux.txt

Purpose

This file stores the instantaneous discharge crossing each boundary every dtmap. In case of the
boundary is composed of several interfaces, the stored discharge is the sum of the discharge crossing
each interface. As the unit vector normal to the boundary interfaces is oriented from the exterior
to the interior, a positive discharge enters the domain.

Format description

<Tab>: tabulation character.
Headerline time <Tab> BCx1<Tab>. . . <Tab> BCxN where x1, . . . , xN

represent the nodestring numbers as defined in the 2dm file
t <Tab> Q1 <Tab> . . . <Tab> QN t is the stored time, Qi is the discharge (in m3.s−1) through

the boundary xN
. . . one line per stored time

Example

time BC_1 BC_2 BC_3
2.0000000000e+1 0.0000000000e+0 4.3274586317e+1 -1.4193271476e+1
3.0000000000e+1 0.0000000000e+0 4.3149535653e+1 -1.4227591312e+1
4.0000000000e+1 0.0000000000e+0 4.3074013841e+1 -1.4246148173e+1
5.0000000000e+1 0.0000000000e+0 4.3030038602e+1 -1.4258119344e+1
6.0000000000e+1 0.0000000000e+0 4.3000513361e+1 -1.4266604580e+1

10.2 output/ResultHydro_pDDDDdHHhMMmSSsXXX.txt

Purpose

This file stores the hydrodynamic results every dtmap. To avoid any computational timestep
reduction to store the results precisely every dtmap, the results are stored when PFG:explain
algorithm. The stored variables depend upon the chosen hyperbolic model (defined by the parameter
model_hyperb) and the storeflag parameter:

model_hyperb storeflag value
default all

ddp
dip
sp
swes h, q, r

PFG:complete based on issue #265

45

10. Ouptut Files Format

Format description

The precise simulation time for storing the variables is indicated in the file name using
the ISO 8601 format. The file name is ResultHydro_pDDDDdHHhMMmSSsXXX.txt where
pDDDDdHHhMMmSSsXXX is the elapsed time from the beginning of the simulation:

• DDDD is the number of days (always on 4 digits)

• HH is the number of hours (always on 2 digits)

• MM is the number of minutes (always on 2 digits)

• SS is the number of seconds (always on 2 digits)

• XXX is the number of milliseconds (always on 3 digits)

46

PART III

Developer Guide

CHAPTER 11

Before You Install

11.1 Understand System Requirements

Conda

The SW2D software strongly relies on Conda, an open source package management. This software
is mandatory for any install from sources. Installing SW2D thanks to binary files does not require
installing Conda.
Conda is a tool to install and manage different software libraries, possibly at different versions,
into independent system configurations called environments. Each environment has a name and
stores its own version of each library (distinct from the one of your general system) so that you can
make installations that would be incompatible with the rest of your system without impacting its
functioning and breaking everything! Concretely, miniconda will create a new directory for each
environment where it will download libraries, binaries and packages.
SW2D has its own set of required libraries at specific versions, and the safest way to install it and
its requirements without affecting the rest of your system is to do it through a new independent
conda environment.

Download Conda for Linux, MacOs and Windows on conda.io. PFG:add precision: which version
of python for conda, what install options? (add to path, admin mode, etc.)

Git

Git is a free and open source distributed version control system designed to handle everything from
small to very large projects with speed and efficiency.
Git is easy to learn and has a tiny footprint with lightning fast performance. It outclasses SCM
tools like Subversion, CVS, Perforce, and ClearCase with features like cheap local branching,
convenient staging areas, and multiple workflows.

In the unlikely event that Git is not already installed on your machine, you can download it here,
regardless of your operating system.

11.2 The SW2D Structure In A Nutshell

The SW2D software is based on several program in order to optimize the computational time (see
Figure 11.1). The process of the model geometry is separated from the main computation process
to avoid to reprocess the geometry each time the hydrodynamics variables are modified by the user.
The computation can be realised either in a GUI or in a solver mode (with no GUI). The current
version of SW2D requires a complementary software to produce the mesh and the parameter files.

49

https://docs.conda.io/en/latest/miniconda.html
https://git-scm.com/downloads

11. Before You Install

Figure 11.1: Workflow of a typical SW2D computationfig:Dev_layout

50

CHAPTER 12

Install from sources

12.1 Linux

1. Additional packages

• SW2D considers the following packages are installed (default packages in Fedora):
libqt5x11extras5-dev, qtbase5-dev, qtdeclarative5-dev, uuid-dev. If not, please install
them:

#!/bin/bash
sudo apt install libqt5x11extras5-dev qtbase5-dev

qtdeclarative5-dev uuid-dev

• Under Ubuntu there are some additional packages that should be installed:

#!/bin/bash
sudo apt install libx11-dev libxt-dev libxext-dev libglu1-mesa-dev

build-essential mesa-common-dev uuid-dev

2. Install Conda from the official website repo.continuum.io:

• Download Conda install script
• Run the install script and remove it:

#!/bin/bash
bash Miniconda3-latest-MacOSX-x86_64.sh
rm Miniconda3-latest-MacOSX-x86_64.sh

• Now you should be able to run conda in your terminal
Remark 12.1.1. Warning: make sure you do not install under the root account or you may
not have access to the program from your personal account.

3. [Optional] If you already previously installed SW2D and wish to make a clean install, you
should remove previous conda environment:

#!/bin/bash
conda deactivate
conda env remove -n sw2d
conda clean --all

4. Download the sources from the SW2D website and unzip the SW2D folder. Alternatively,
you may clone the SW2D repository from the Inria Gitlab:

#!/bin/bash
git clone git@gitlab.inria.fr:lemon/sw2d.git

5. Navigate into the SW2D directory, create the SW2D conda environment and activate it:

51

https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
http://sw2d.inria.fr/getting-started/
https://gitlab.inria.fr/lemon/sw2d

12. Install from sources

#!/bin/bash
cd <YOUR-DIRECTORY-TO-SW2D>
conda env create -f pkg/sw2d-linux.yaml
conda activate sw2d

6. Create a build directory from the root and navigate into it before configuring and building:

#!/bin/bash
mkdir build
cd build
cmake .. -DCMAKE_PREFIX_PATH=\$CONDA_PREFIX

-DCMAKE_BUILD_TYPE=Debug
make -j8

Remark 12.1.2. You may want to replace ’Debug’ by ’Release’, depending on the type of
optimization you want.

7. You’re all set!

12.2 MacOS

1. Make sure XCode command line tools are installed:

#!/bin/bash
sudo xcode-select --install

2. Install Conda from the official website repo.continuum.io:

• Download Conda install script
• Run the install script and remove it:

#!/bin/bash
sudo bash Miniconda3-latest-MacOSX-x86_64.sh
rm Miniconda3-latest-MacOSX-x86_64.sh

• Now you should be able to run conda in your terminal

3. [Optional] If you already previously installed SW2D and wish to make a clean install, you
should remove previous conda environment:

#!/bin/bash
conda deactivate
conda env remove -n sw2d
conda clean --all

4. Download the sources from the SW2D website and unzip the SW2D folder. Alternatively,
you may clone the SW2D repository from the Inria Gitlab:

#!/bin/bash
git clone git@gitlab.inria.fr:lemon/sw2d.git

5. Navigate into the SW2D directory, create the SW2D conda environment and activate it:

#!/bin/bash
cd <YOUR-DIRECTORY-TO-SW2D>
conda env create -f pkg/sw2d-mac.yaml
conda activate sw2d

52

https://repo.continuum.io/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
http://sw2d.inria.fr/getting-started/
https://gitlab.inria.fr/lemon/sw2d

12.3. Windows

6. Create a build directory from the root and navigate into it before configuring and building:

#!/bin/bash
mkdir build
cd build
cmake .. -DCMAKE_PREFIX_PATH=$CONDA_PREFIX

-DCMAKE_BUILD_TYPE=Debug -DCMAKE_CXX_FLAGS="-g -O2"
make -j8

Remark 12.2.1. You may want to replace ’Debug’ by ’Release’, depending on the type of
optimization you want. The optimization flags [-DCMAKE_CXX_FLAGS="-g -O2"] are
optional.

7. You’re all set!

12.3 Windows

Note: this method should work. This does not mean it is the only one but at least, it should work...

Install Git and download sources

Git is a software that allows to work in team on code, to mark its progress step by step and to
gather the progress of everyone. In this procedure, you need to have access to the Inria Gitlab,
with rights to download SW2D sources.

1. Download and install GIT. Choose you favorite text editor when prompted (if none, select
Notepad). Confirm all other default pre-selected options.

2. Set your SSH key.

• Open your file browser where you wish to download and install SW2D. Right-click and
select "Git bash here". This should open a console window.

• Create your key (replace [EMAIL] by your personal email:

#!/bin/bash
ssh-keygen -t ed25519 -C "[EMAIL]"

• When prompted, validate the key location and set your passphrase (twice).
• Open a file browser and navigate until your C:/Users/Username/.ssh folder.
• Edit the id_ed25519.pub file.
• Copy the full content of the file.
• Paste it into the dedicated textbox on your Gitlab personal profile key page and validate

the key.

3. Download sources

• Thanks to the Git console you just opened, clone the whole project:

#!/bin/bash
git clone git@gitlab.inria.fr:lemon/sw2d.git

if you get an error message, try the download using the Http protocol:

git clone https://gitlab.inria.fr/lemon/sw2d.git

• When prompted, answer yes to the security question related to the ssh host, and enter
your passphrase. Download should start and a sw2d folder should be created in your
current directory.

• As soon has the download is over, you may configure your git account (still in the Git
Bash console):

53

https://gitlab.inria.fr
https://git-scm.com/download/win
https://gitlab.inria.fr/-/profile/keys

12. Install from sources

#!/bin/bash
cd sw2d
git config user.name "[FIRSTNAME] [LASTNAME]"
git config user.email "[EMAIL]"

VGt: tout ce qui est fait ci-dessus marche aussi dans une console Conda - est-il
préférable de faire installer Conda d’abord ? You’re all set. You may now close the GIT
Bash console. Let us now move to the Conda environment.

Install Conda and set up your environment

1. Download and install Miniconda3 for Windows from the official website repo.continuum.io.

• You can set up the directory of your choice when asked, e.g. /.miniconda. WARNING:
the installation target you choose must be without any space character (this should be
prompted during the install process)

• Make sure to answer YES when asked to add conda to your PATH
• Do not register Miniconda3 as the system Python

2. [Optional] If you already previously installed SW2D and wish to make a clean install, you
should remove previous conda environment from a Anaconda Prompt (Miniconda3
console:

#Conda prompt
conda deactivate
conda env remove -n sw2d
conda clean --all

3. Create my Conda environment

• In your startup menu, choose launch Anaconda Prompt (Miniconda3). A console
window should open.

• Navigate to the location of the SW2D sources (recently downloaded)

#Conda prompt
cd [PathToSW2D]

• Configure the SW2D environment

#Conda prompt
conda env update -f pkg\env\sw2d-windows.yaml

This will download and install all required packages (this may take a while).

You’re all set with Conda. Now you should be able to activate the SW2D environment at any
moment:

#Conda prompt
conda activate sw2d

Install Visual Studio and compile SW2D

We shall use Visual Studio 2019 (Community edition) to build targets that can be launched from
the console.

1. Install the Community version (no need to run it so far).

• In the component list, make sure that Development Desktop in C++ is selected
• The install process is very long, take a break!

54

https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe
https://visualstudio.microsoft.com/fr/thank-you-downloading-visual-studio/?sku=Community&rel=16

12.3. Windows

2. Create the SW2D project and compile
ATTENTION : JE DOIS ENCORE FAIRE DES MODIFS ICI (ANTOINE) VGt: La
procédure ci-dessous est tirée du Readme et ne fonctionne pas

set CONDA_PREFIX="C:\Users\vguinot.AD\Miniconda3\envs\sw2d"
set BUILD_CONFIG=Release
set LIBRARY_LIB=%CONDA_PREFIX%\Library\lib
set LIBRARY_PREFIX=%CONDA_PREFIX%\Library
conda activate sw2d
cmake .. -G "Visual Studio 16 2019" ^
-Wno-dev ^
-DCMAKE_INSTALL_PREFIX=%LIBRARY_PREFIX% ^
-DCMAKE_PREFIX_PATH=%LIBRARY_PREFIX% ^
-DCMAKE_INSTALL_RPATH:STRING=%LIBRARY_LIB% ^
-DCMAKE_INSTALL_NAME_DIR=%LIBRARY_LIB%

Voici les messages à la console:

-- Selecting Windows SDK version 10.0.18362.0 to target Windows 10.0.18363.
CMake Error at CMakeLists.txt:171 (add_subdirectory):
add_subdirectory given source "src" which is not an existing directory.

CMake Error at CMakeLists.txt:172 (add_subdirectory):
add_subdirectory given source "app" which is not an existing directory.

CMake Error at CMakeLists.txt:173 (add_subdirectory):
add_subdirectory given source "test/tst_ci" which is not an existing
directory.

CMake Error: File D:/VGt/sw2d_branches/cmake/sw2dConfig.cmake.in does not exist.
CMake Error at C:/Users/vguinot.AD/Miniconda3/envs/sw2d/Library/share/cmake-3.23/Modules/CMakePackageConfigHelpers.cmake:342 (configure_file):
configure_file Problem configuring file

Call Stack (most recent call first):
CMakeLists.txt:188 (configure_package_config_file)

CMake Error: File D:/VGt/sw2d_branches/cmake/sw2dConfig.cmake.in does not exist.
CMake Error at C:/Users/vguinot.AD/Miniconda3/envs/sw2d/Library/share/cmake-3.23/Modules/CMakePackageConfigHelpers.cmake:342 (configure_file):
configure_file Problem configuring file

Call Stack (most recent call first):
CMakeLists.txt:194 (configure_package_config_file)

-- Configuring incomplete, errors occurred!
See also "D:/VGt/sw2d_branches/sw2d/CMakeFiles/CMakeOutput.log".
See also "D:/VGt/sw2d_branches/sw2d/CMakeFiles/CMakeError.log".

VGt - fin de ce qui ne marche pas avec le message d’erreur

• Launch Visual Studio 2019 and open your SW2D folder (the one that you downloaded
thanks to GIT)

• Generate cash thanks to Project/Generate Cash (or Project/Configure SW2D).
Remark: this step may be done automatically when you open the SW2D folder.

• Build your target.

Launch SW2D binaries

You’re all set now!

• Open an Anaconda Prompt console and navigate wherever you have input files for SW2D

• Activate your SW2D environment

#Anaconda prompt
conda activate sw2d

• Now you may run all SW2D binaries, such as: VGT : attention, ça ne fonctionne pas !

55

12. Install from sources

#Anaconda prompt
sw2dSolver.exe
sw2dModeler.exe
sw2dConverter.exe

56

Index

2dm, 38

Boundary, 36, 45
Boussinesq, 40
Boussinesq coefficient, 27
Building exchange coefficient, 28

Courant number, 38

Divergence correction, 38, 39

Friction, 39
Chezy, 33, 39
Manning, 34, 39
Strickler, 35, 39

HeadLoss, 42

Initial conditions, 37, 40

Model
Hyperbolic, 39
DDP, 29, 30, 39
DIP, 31, 39
SP, 32, 39
SWES, 39

Porosity, 40
Probes, 39, 42

remark, 27, 28, 41

Source term
Infiltration, 37
Precipitation, 41
Wind, 39, 42, 44

to be checked, 5, 9–13, 20–23, 33, 38–40, 45,
49

57

	Contents
	Quick Start Guide
	Overview
	About This Guide
	Product Overview
	About the SW2D Developer Team
	Licensing

	Before You Install
	Understand System Requirements
	The SW2D Structure In A Nutshell

	Install SW2D from binaries
	Linux and MacOS
	Windows

	First Examples
	sw2dConverter examples
	sw2dSolver examples

	User Guide
	Physical and Numerical Models
	Boundary conditions
	time interpolation
	f-type boundary condition
	c-type boundary condition

	Running the code
	sw2dConverter
	sw2dModeler
	sw2dSolver

	Simulation structure
	Input File Format
	Boussinesq_map.txt
	Buildings_exchange_map.txt
	DDP_cell_porosity_map.txt
	DDP_edge_porosity_map.txt
	DIP_cell_porosity_map.txt
	DIP_edge_porosity_map.txt
	SP_cell_porosity_map.txt
	extraction_times_list.txt
	friction_chezy_map.txt
	friction_manning_map.txt
	friction_strickler_map.txt
	Hydro_boundary_time_series.txt
	Infiltration_map.txt
	initial_conditions_map.txt
	input.sw2d
	precipitation_boundary_time_series.txt Why "boundary"? It is a source term.
	Precipitation_station_codes_map.txt
	probes_location.txt
	singular_head_loss_map.txt
	wind_station_codes_map.txt
	wind_time_series.txt

	Ouptut Files Format
	output/ResultBoundariesFlux.txt
	output/ResultHydro_pDDDDdHHhMMmSSsXXX.txt

	Developer Guide
	Before You Install
	Understand System Requirements
	The SW2D Structure In A Nutshell

	Install from sources
	Linux
	MacOS
	Windows

	Index

